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Abstract
Community detection and link prediction are
highly dependent since knowing cluster structure
as a priori will help identify missing links, and in
return, clustering on networks with supplemented
missing links will improve community detection
performance. In this paper, we propose a Cluster-
driven Low-rank Matrix Completion (CLMC), for
performing community detection and link predic-
tion simultaneously in a unified framework. To this
end, CLMC decomposes the adjacent matrix of a
target network as three additive matrices: cluster-
ing matrix, noise matrix and supplement matrix.
The community-structure and low-rank constraints
are imposed on the clustering matrix, such that the
noisy edges between communities are removed and
the resulting matrix is an ideal block-diagonal ma-
trix. Missing edges are further learned via low-rank
matrix completion. Extensive experiments show
that CLMC achieves state-of-the-art performance.

1 Introduction
Community structure is ubiquitous in real-world networks,
and many community detection algorithms have been pro-
posed, e.g., NCut [Shi and Malik, 2000], MCL [Van Don-
gen, 2000], Modularity [Newman, 2006], Attractor [Shao et
al., 2015], FUSE [Ye et al., 2016], ORSC[Shao et al., 2017],
MAPPR [Yin et al., 2017], Dcut [Shao et al., 2018], to men-
tion a few. Although community detection has achieved great
success during the past decade, finding intrinsic community
structure in networks is still challenging. For example, most
existing community detection approaches usually work well
if (but only if) the communities are well separated. With the
increase of inter-cluster edges, the performance of established
approaches tends to decrease since they significantly hamper
community separation. In addition, many connections in real-
world networks are missing. Such problem, further aggra-
vates the difficulty to find high-quality communities. There-
fore, identifying inter-cluster edges and supplementing miss-
ing edges offer a promising way to enhance the performance
of community detection and link prediction simultaneously.

In recent years, matrix completion becomes an important
tool in machine learning, and has been extensively studied in

recommender systems and computer vision [Liu et al., 2013;
Natarajan and Dhillon, 2014; Kang et al., 2016]. Given an
observed matrix A, matrix completion constructs a new ma-
trix Â that approximates A at its unobserved entries. Since
there are infinite number of matrices that perfectly agree with
the observed entries of A, some additional assumptions are
usually imposed such as low-rank [Candès and Recht, 2009;
Liu et al., 2013; Hastie et al., 2015; Yang et al., 2018] and
sparsity [Lu et al., 2016; Fan and Chow, 2017].

Motivated by aforementioned problems and existing ma-
trix completion techniques, in this paper, we propose a
Cluster-driven Low-rank Matrix Completion, called CLMC,
which aims to learn an ideal similarity matrix to perform
graph clustering and a supplement matrix to conduct link pre-
diction simultaneously in a unified framework. The basic idea
of CLMC is to decompose the original data matrix into three
additive matrices: the first corresponds to an ideal clustering
matrix (Figure 1(b)), which is expected to be a block-diagonal
matrix where the inter-cluster edges are removed and mean-
while, the missing or trend connections are supplemented in
each community. The second corresponds to the inter-cluster
edges, which is viewed as a noisy matrix (Figure 1(c)). The
third one, called supplement matrix, is used to characterize
the missing or trend connections (Figure 1(d)). With the re-
sulting matrices, we can perform community detection on the
clustering matrix, and, conduct link prediction with the sup-
plement matrix.

CLMC has several attractive benefits, most importantly:

• Reciprocal Learning. Instead of treat community de-
tection and link prediction as two separated problems,
CLMC learns an ideal similarity matrix to perform graph
clustering and a supplement matrix to conduct link pre-
diction simultaneously. As a result, CLMC allows find-
ing high-quality communities since the noisy connec-
tions are well filtered and the missing connections are
supplemented. In return, the resulting good graph clus-
tering further boosts the link prediction performance.

• Robustness: Since CLMC examines clustering part,
noise part and missing part simultaneously, it is thus
quite insensitive to noisy or missing edges.
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(a) Adjacent Matrix (b) Clustering Matrix (c) Noise Matrix (d) Supplement Matrix

Figure 1: The illustration of cluster-driven low-rank matrix completion. Here the original adjacent matrix is decomposed to three additive
matrices, where clustering matrix is expected to be a block-diagonal matrix, noise matrix contains the inter-cluster connectivity (i.e., noisy
edges) and supplement matrix characterizes the missing or trend edges. Note that the white dot indicates connection in (a)(b)(c) and black
dot means no connection, while in (d), white dots indicate zeroes and black dots indicate negatives values of entries in supplement matrix
(i.e., missing connections).

2 Proposed Approach
2.1 Low-rank Matrix Completion
Given an observed matrix A, if the number of known entries
in A is sufficiently large (i.e., p ≥ Crn6/5 log n) and the en-
tries are uniformly distributed, we can complete the data ma-
trix by solving the following optimization problem [Candès
and Recht, 2009].

min rank(Â)

s.t. Âij = Aij ∀(i, j) ∈ Ω,
(1)

where Â is the completed matrix, rank(Â) is the rank of ma-
trix Â, and Ω is the set of indices of observed entries. Al-
though the optimization problem is NP-hard, it can be ap-
proximated to optimize the nuclear norm [Candès and Recht,
2009; Keshavan et al., 2010] as follows.

min ||Â||∗
s.t. Âij = Aij ∀(i, j) ∈ Ω,

(2)

where || · ||∗ denotes the nuclear norm of a matrix.

2.2 Cluster-driven Low-rank Matrix Completion
As aforementioned, the key idea of our algorithm is to learn
an ideal clustering matrix by removing noisy edges and com-
pleting missing edges in each community. To this end, the
observed data matrix A can be divided into three parts: clus-
tering matrix, noise matrix and supplement matrix. Here, we
borrow the idea from low-rank matrix completion to handle
missing edges. However, since the low-rank assumption of
the recovered matrix Â may not hold in real-world applica-
tions, unlike existing approaches, we impose the low-rank
constraint on the clustering matrix instead. As a result, we
first formulate our objective function as follows.

min ||Ĉ||∗
s.t. A = Ĉ + R̂+ E, πΩ(E) = 0, Ĉ ≥ 0, R̂ ≥ 0

(3)

Where Ĉ, R̂ andE are the clustering matrix, noise matrix and
supplement matrix, respectively. πΩ : Rm×n → Rm×n is a
linear operator that keeps the entries in Ω unchanged and sets
those outside Ω zeroes.

Since we expect Ĉ to be an ideal block-diagonal matrix
where the inter-cluster edges are removed, and meanwhile,
the missing or trend connections are supplemented in each
community, a cluster structure constraint needs to be added
to make Ĉ have exactly k connected components, where k is
the number of clusters. Let LĈ = D − Ĉ be the Laplacian
matrix associated with Ĉ, andD is the diagonal matrix where
the ii-th diagonal element is

∑
j Ĉij . If Ĉ is non-negative,

according to the property of Laplacian matrix, we have the
following theorem [Mohar et al., 1991; Chung, 1997].
THEOREM 1 The number k of the eigenvalue 0 of the
Laplacian matrix LĈ is equal to the number of connected
components in the graph associated with Ĉ.

According to Theorem 1, the ideal clustering matrix can be
obtained by imposing rank(LĈ) = n − k constraint. Sup-
pose that λi is the i-th smallest eigenvalue of LĈ , the con-
straint can be approximated to the following problem for a
large positive value of α1.

min α1

k∑
i=1

λi (4)

When α1 is large enough,
∑k
i=1 λi will be driven to be close

to zero, which results in rank(LĈ) = n − k. In addition,
according to the Ky Fan’s Theorem [Fan, 1949], we have

k∑
i=1

λi = min
F∈Rn×k,FTF=I

tr(FTLĈF ) (5)

By adding the clustering constraint, our problem is further
written as follows.

min ||Ĉ||∗ + α1tr(F
TLĈF )

s.t. A = Ĉ + R̂+ E, πΩ(E) = 0

Ĉ ≥ 0, R̂ ≥ 0, FTF = I

(6)

As for noise matrix, we assume that it is sparse and the
`1-norm constraint is imposed. As a result, we have our final
objective function as follows.

min ||Ĉ||∗ + α1tr(F
TLĈF ) + α2||R̂||1

s.t. A = Ĉ + R̂+ E, πΩ(E) = 0

Ĉ ≥ 0, R̂ ≥ 0, FTF = I

(7)
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2.3 Optimization
In the following, we will introduce an iterative strategy to
solve our optimization problem.

Update F By fixing Ĉ, R̂ and E, the problem (7) is
equivalent to optimizing the following objective function:

min
F

tr(FTLĈF ) s.t. F ∈ Rn×k, FTF = I (8)

The optimal solution F to the problem is formed by the k
eigenvectors of LĈ corresponding to the k smallest eigenval-
ues.

Update Ĉ, R̂ and E By fixing F , we can obtain Ĉ, R̂
and E by optimizing the following objective function.

min
Ĉ,R̂,E

||Ĉ||∗ + α1tr(F
TLĈF ) + α2||R̂||1 (9)

s.t. A = Ĉ+ R̂+E, πΩ(E) = 0,Ĉ ≥ 0, R̂ ≥ 0, Z ≥ 0

Generally, it is a non-trivial task to obtain Ĉ directly.
Therefore, we introduce an auxiliary variableZ, and optimize
the following objective function.

min
Ĉ
||Ĉ||∗ + α1tr(F

TLZF ) + α2||R̂||1 (10)

s.t. Z = Ĉ, A = Ĉ + R̂ + E, πΩ(E) = 0, Ĉ ≥ 0,
R̂ ≥ 0, Z ≥ 0

where LZ is the Laplacian matrix of Z, LZ = DZ − Z.
By fixing the others, we can update Ĉ as follows. First, we

introduce the partial augmented Lagrange multipliers and in-
corporate the equality constraints into the objective function,
the problem is transformed as follows.

min
Ĉ
||Ĉ||∗ + α1tr(F

TLF ) + α2||R̂||1 + tr(Y T1 (Z − Ĉ))

+
µ

2
||Z−Ĉ||2F+tr(Y T2 (A−Ĉ−R̂−E))+

µ

2
||A−Ĉ−R̂−E||2F

(11)
By fixing the others, we can update Z by optimizing the

following objective function.

min
Z
α1tr(F

TLZF )+ tr(Y T1 (Z− Ĉ))+
µ

2
||Z− Ĉ||2F (12)

Since Eq.(12) is convex and smooth, the closed-form of Z
can be derived as follows.

Z = Ĉ − α1H + Y1

µ
(13)

where fi is the i-th row of F ∈ Rn×k, andHij = ||fi−fj ||2F .
Since Z is non-negative, during the whole optimization pro-
cess, Z keeps to be non-negative by Z = Z+, where Z+ is
the positive part of Z, namely, Z+ = max(0, Z). This is the
same to Ĉ and R̂.

By fixing the others, we can update Ĉ by optimizing the
following objective function.

min
Ĉ
||Ĉ||∗ + tr(Y T1 (Z − Ĉ)) +

µ

2
||Z − Ĉ||2F

Algorithm 1 Solving Problem (7)

1: Input: Data matrix A, parameters: α1, α2

2: Output: Ĉ, R̂, E, F

3: Initialize Z = Ĉ = 0, R̂ = 0, Y 0
1 = 0, Y 0

2 = 0,
µ = 10−6, maxµ = 1010, ρ = 1.5, ε = 10−8

4: while not converge do
5: Fix the others and update F by solving problem (8),
6: F = arg min

FTF=I

tr(FTLĈF );

7: Fix the others and update Z by solving problem (12),
8: Z = Ĉ −

(
H + Y1

)
/µ

9: Fix the others and update Ĉ by solving problem (14),
10: Ĉ = D 1

2µ

(
1

2µ (Y1 + Y2) + 1
2 (A+ Z − R̂)

)
11: Fix the others and update R̂ by solving the problem

(17),
12: R̂ = Sα2

µ

(
(Y2/µ+ (A− Ĉ)

)
13: Fix the others and update E by solving problem (20),
14: E = πΩ(A− Ĉ − R̂+ µ−1Y2)
15: Update the Lagrange multipliers
16: Y1 = Y1 + µ(Z − Ĉ)

17: Y2 = Y2 + πΩ

(
µ(A− Ĉ − R̂− E)

)
18: Update the parameter µ by µ = min(ρµ,maxµ)
19: Check the convergence conditions
20: ||A− Ĉ − R̂− E||2F < ε and ||Z − Ĉ||2F < ε
21: end while

+tr
(
Y T2 (A− Ĉ − R̂−E)

)
+
µ

2
||A− Ĉ − R̂−E||2F (14)

By further reformulating the equation (14), the problem is
equivalent to optimizing the following well-known objective
function [Cai et al., 2010].

min
Ĉ

1

2µ
||Ĉ||∗+

1

2
||Ĉ−(

1

2µ
(Y1+Y2)+

1

2
(A+Z−R̂−E))||2F

(15)
According to the singular value thresholding (SVT) algo-

rithm [Cai et al., 2010], we can obtain Ĉ as follows.

Ĉ = D 1
2µ

(
(

1

2µ
(Y1 + Y2) +

1

2
(A+ Z − R̂− E)

)
(16)

where the soft-thresholding operator Dµ is defined as
Dµ(X) := UDµ(Σ)V T , Dµ(Σ) = diag(δi − µ)+.

By fixing the others, we can update R̂ by optimizing the
following objective function.

min
R̂

α2||R̂||1+tr
(
Y T2 (A−Ĉ−R̂−E)

)
+
µ

2
||A−Ĉ−R̂−E||2F

(17)
The problem is equivalent to optimizing the following

well-known objective function.

min
R̂

α2

µ
||R̂||1 +

1

2
||R̂− (Y2/µ+ (A− Ĉ − E))||2F (18)

According to the shrinkage operator [Hale et al., 2007], we
can obtain the R̂ as follows.
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Algorithm 2 Clustering and Link Prediction via CLMC

1: Input: Data matrix A, α1, α2, number of clusters k

2: Obtain four matrices matrices, Ĉ, R̂, E and F by solving
Problem (7) via Algorithm 1.

3: Use k-means to cluster the affinity matrix F into k
groups.

4: Construct the recovered data matrix Â = A− E+ET

2 .
5: Perform link prediction with Â.

R̂ = Sα2
µ

(
(Y2/µ+ (A− Ĉ − E)

)
(19)

where the shrinkage operator Sµ is defined as Sµ(X) := X−
µsgn(X) + sgn(X)� [µ− |X|]+.

By fixing the others, we can update E by optimizing the
following objective function.

min
E

tr
(
Y T2 (A− Ĉ− R̂−E)

)
+
µ

2
||A− Ĉ− R̂−E||2F (20)

To solve the problem, we can update E as follows.

E = πΩ(A− Ĉ − R̂+ Y2/µ) (21)

Furthermore, the multipliers Y1 and Y2 are updated directly
by

Y1 = Y1 + µ(Z − Ĉ) (22)

Y2 = Y2 + πΩ

(
µ(A− Ĉ − R̂− E)

)
(23)

Finally, Algorithm 1 gives the pseudocode of solving Prob-
lem (7).

2.4 Graph Clustering and Link Prediction
After solving Problem (7), we can derive three matrices, in-
cluding a clustering matrix Ĉ, a noise matrix R̂ and a comple-
tion matrix E, plus the clustering indicator matrix F . We uti-
lize F as a similarity matrix, and then use the k-means algo-
rithm to produce the final clustering results. Moreover, since
E is a completion matrix, and we can use it to perform link
prediction. Specifically, we can compute the completed ma-
trix Â = A − E+ET

2 . It is important to note that community
detection and link prediction work on F̂ and Â, respectively,
instead of the original data matrixA. Beyond, the two mining
tasks are also mutually enhanced. On the one hand, with sup-
plementing missing and/or trend edges while removing noisy
edges, it makes clustering be more easy and effective. On
the other hand, a good clustering will result in a better matrix
completion to support link prediction. Finally, Algorithm 2
gives the pseudocode of graph clustering and link prediction
via CLMC.

3 Experiment
We use ten publicly available real-world datasets to evaluate
the performance of CLMC, including Karate, Football, Pol-
books, Politics-ie, Olympics, Twitter, USAir, Celegans, PB
and NS.

3.1 Proof of Concept
Here we start with several synthetic networks featuring dis-
tinct characteristics to prove the concept of CLMC. To make
the synthetic networks to be more consistent with real-world
networks, the LFR benchmark networks [Lancichinetti et al.,
2008] have been applied, where the distributions of degree
and community size of networks can be easily controlled.

Community Detection with Noise
First, we evaluate how well our clustering algorithm allows
detecting communities by varying their inter-cluster edges.
We fix node average degree and community size, and change
the mixing parameter µ from 0.1 to 0.6 to generate a set of
networks with different inter-cluster edges. µ is defined as the
fraction of links of each node outside its community, which is
used to control the difficulty of community separation. With
the increase of mixing parameter, the performance (measured
by NMI) of all eight approaches is shown in Figure 2. We can
observe that CLMC, Attractor, Ncut and MCL almost achieve
perfect clustering with the mixing parameter up to 0.5. The
performance begins to decrease with more and more inter-
edges added into the network, and CLMC tends to be more
robust to these noisy edges. For Modularity, PIC and MCL,
the performance is not comparable with other five algorithms
on these networks.

Community Detection with Missing Edges
We further evaluate how the algorithms respond to networks
with different average degrees, which can be regarded as
missing edges in communities. Here we fix the inter-cluster
edges, and change the average degree from 5 to 40, and ex-
amine the graph clustering performance. Figure 3 shows
CLMC allows perfect clustering when the average degree
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Figure 2: The performance of different algorithms on the LFR
benchmark networks by varying the number of inter-cluster edges.
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Figure 3: The performance of different algorithms on the LFR
benchmark networks by varying community density using the av-
erage degree.
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Algorithms Football Karate Polbooks Politics-ie Olympics Twitter

NMI ARI Pur. NMI ARI Pur. NMI ARI Pur. NMI ARI Pur. NMI ARI Pur. NMI ARI Pur.

CLMC 0.942 0.916 0.930 1.000 1.000 1.000 0.633 0.757 0.895 0.970 0.963 0.986 0.984 0.989 0.997 0.909 0.838 0.923
Attractor 0.923 0.897 0.930 0.859 0.939 1.000 0.559 0.680 0.857 0.905 0.942 0.955 0.551 0.417 0.881 0.487 0.127 0.911

Ncut 0.923 0.897 0.930 0.833 0.882 0.971 0.565 0.675 0.848 0.940 0.931 0.973 0.959 0.978 0.990 0.824 0.610 0.822
Modularity 0.596 0.474 0.574 0.577 0.680 0.971 0.508 0.638 0.838 0.783 0.739 0.796 0.797 0.858 0.891 0.385 0.177 0.279

Metis 0.393 0.095 0.339 0.836 0.882 0.970 0.502 0.516 0.781 0.738 0.639 0.756 0.698 0.612 0.878 0.427 0.127 0.352
MCL 0.923 0.897 0.930 0.833 0.882 0.970 0.455 0.594 0.857 0.605 0.209 0.462 0.612 0.528 1.000 0.318 0.061 0.911

Spectral 0.923 0.897 0.930 0.426 0.403 0.824 0.629 0.758 0.886 0.189 0.077 0.344 0.013 0.005 0.480 0.378 0.067 0.405
PIC 0.556 0.279 0.548 0.833 0.882 0.971 0.583 0.680 0.838 0.642 0.589 0.719 0.834 0.857 0.897 0.415 0.114 0.352

FUSE 0.897 0.856 0.896 0.634 0.669 0.912 0.526 0.612 0.819 0.909 0.886 0.946 0.798 0.829 0.917 0.816 0.578 0.802

Table 1: The performance of different community detection algorithms on real-world data sets. Here the evaluation matrices, NMI, ARI and
Purity are reported. We use bold font to mark the best results and underline the second best.

Football Karate Polbooks Politics-ie Olympics Twitter

NMI ARI Pur. NMI ARI Pur. NMI ARI Pur. NMI ARI Pur. NMI ARI Pur. NMI ARI Pur.

CLMC 0.941 0.915 0.930 0.836 0.882 0.971 0.573 0.700 0.867 0.979 0.974 0.991 0.986 0.994 0.997 0.873 0.778 0.862
Attractor 0.920 0.909 0.939 0.593 0.702 0.971 0.515 0.600 0.848 0.886 0.812 0.914 0.570 0.431 0.758 0.820 0.611 0.773

Ncut 0.930 0.906 0.930 0.833 0.882 0.971 0.548 0.646 0.838 0.921 0.908 0.964 0.986 0.994 0.997 0.790 0.573 0.769
Modularity 0.656 0.522 0.617 0.577 0.680 0.971 0.496 0.610 0.838 0.783 0.739 0.796 0.831 0.904 0.891 0.365 0.211 0.340

Metis 0.428 0.148 0.435 0.836 0.882 0.971 0.506 0.519 0.800 0.775 0.673 0.837 0.678 0.598 0.871 0.426 0.119 0.344
MCL 0.919 0.896 0.930 0.836 0.882 0.971 0.587 0.675 0.848 0.846 0.726 0.882 0.844 0.857 0.957 0.694 0.286 0.733

Spectral 0.921 0.899 0.930 0.181 0.110 0.676 0.551 0.681 0.857 0.189 0.077 0.344 0.013 0.005 0.480 0.272 0.040 0.328
PIC 0.523 0.241 0.522 0.181 0.110 0.676 0.583 0.682 0.838 0.614 0.532 0.692 0.797 0.817 0.894 0.396 0.092 0.328

FUSE 0.886 0.831 0.896 0.496 0.572 0.882 0.585 0.642 0.829 0.885 0.865 0.932 0.784 0.801 0.907 0.770 0.603 0.741

Table 2: The performance of different community detection algorithms on real-world data sets with missing edges of 10%. Here NMI, ARI
and Purity are reported. We use bold font to mark the best results and underline the second best.

ranges from 15 to 40. For Spectral, Metis, FUSE and Modu-
larity, they cannot produce promising results.

3.2 Community Detection Evaluation
Here, we compare CLMC to eight representatives of com-
munity detection algorithms: Ncut, Modularity, Metis, MCL,
Spectral, PIC, FUSE and Attractor. Ncut [Shi and Malik,
2000] is a well-known algorithm for graph clustering by opti-
mizing the normalized cut criterion. Modularity [Newman,
2006] is a popular community detection algorithm based on
the modularity measure. Metis [Karypis and Kumar, 1998] is
a typical clustering approach for large networks via multi-
level partitioning and parallelized implementation. MCL
[Van Dongen, 2000] is an algorithm widely used in life sci-
ences based on the simulation of (stochastic) flow in graphs.
Spectral is a typical clustering algorithm which allows find-
ing arbitrarily shaped clusters [Lin and Cohen, 2010]. PIC is
a power-iteration-based clustering method based on spectral
clustering [Ng et al., 2002]. FUSE is a new spectral cluster-
ing approach by employing ensemble learning and ICA [Ye et
al., 2016]. Attractor is a model-based community detection
approach based on distance dynamics [Shao et al., 2015].

For all experiments, Ncut, Modularity, Metis, Spectral, PIC
and FUSE specify the number of clusters (k = |C|), where
|C| is the true number of classes. For MCL, we perform pa-
rameter tuning on the range (1.0, 4.0) with step size of 0.2.

For Attractor, the cohesion parameter varies from 0.1 to 1.0
with stepsize of 0.1. For CLMC, α1 takes the values from
(0.001, 0.1, 1) and α2 takes the values from (0.1, 1, 10) . For
all algorithms, the best results are recorded. In addition, since
the performance of Spectral, PIC, FUSE and CLMC depend
on the initialization with k-means clustering, we run them
for 10 times, and the best results are reported. For networks
whose communities are already known, the performance is
measured by three widely used evaluation measures: Normal-
ized Mutual Information (NMI) [Strehl and Ghosh, 2003],
Adjusted Rand Index (ARI) [Rand, 1971] and Cluster Purity.

Table 1 summarizes the performance of different commu-
nity detection algorithms on six real-world data sets. From
the table, we can observe that CLMC achieves good perfor-
mance on all data sets. On the Karate data, it even produces
perfect clustering. The success of CLMC on community de-
tection lies in the removal of noisy edges and the completion
of missing/trend connections. Table 2 further reports the per-
formance of different algorithms on the real-world data sets
with 10% missing edges, and we can see that CLMC outper-
forms the state-of-the-art algorithms.

3.3 Link Prediction Evaluation
As an other function, CLMC also supports link prediction
with the supplement matrix. Here we further evaluate its link
prediction performance.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3386



CLMC CN Jaccard HPI HDI LHN AA RA PA LP Katz LHNII ACT RWR SimRank TS MF

Football 0.930 0.835 0.848 0.846 0.848 0.850 0.838 0.838 0.266 0.853 0.851 0.870 0.601 0.875 0.893 0.619 0.751
Karate 0.918 0.705 0.617 0.717 0.606 0.604 0.744 0.754 0.720 0.721 0.714 0.492 0.670 0.902 0.652 0.749 0.729
Polbooks 0.931 0.891 0.871 0.888 0.859 0.836 0.900 0.901 0.703 0.912 0.911 0.821 0.748 0.925 0.871 0.256 0.832
Politics-ie 0.960 0.943 0.940 0.936 0.932 0.898 0.947 0.951 0.721 0.940 0.940 0.836 0.749 0.952 0.904 0.382 0.921
Olympics 0.936 0.907 0.906 0.880 0.892 0.794 0.913 0.924 0.798 0.905 0.904 0.681 0.802 0.920 0.807 0.495 0.923
Twitter 0.917 0.896 0.889 0.893 0.874 0.828 0.907 0.913 0.702 0.904 0.904 0.741 0.711 0.910 0.842 0.494 0.804
USAir 0.965 0.929 0.893 0.867 0.887 0.767 0.940 0.946 0.877 0.925 0.922 0.619 0.894 0.943 0.782 0.594 0.921
Celegans 0.909 0.851 0.798 0.810 0.787 0.732 0.869 0.873 0.750 0.854 0.853 0.602 0.742 0.901 0.764 0.447 0.829
PB 0.943 0.918 0.873 0.852 0.869 0.762 0.921 0.922 0.901 0.929 0.929 0.639 0.884 0.934 0.774 0.492 0.928
NS 0.971 0.932 0.932 0.932 0.932 0.931 0.932 0.932 0.673 0.937 0.934 0.966 0.596 0.932 0.931 0.862 0.637

Table 3: The performance of seventeen link prediction algorithms on ten data sets. Here the AUC values are reported, and we use bold font
to mark the best results and underline the second best.

Here, we compare CLMC with sixteen link prediction al-
gorithms, including neighor-based methods: common neigh-
bors (CN), Jaccard, Hub Promoted Index (HPI), Hub De-
pressed Index (HDI), Leicht-Holme-Newman Index (LHN1
and LHN2), Adamic-Adar (AA), resource allocation (RA),
preferential attachment (PA), path-based methods: Katz, lo-
cal path index, average commute time (ACT), random walk
with restart (RWR), transfer similarity (TS), SimRank, and
latent-based method: matrix factorization (MF). For details,
please refer to the link prediction survey paper [Martı́nez et
al., 2017]. For Katz, the damping factor is searched from
0.001 and 0.01. The free parameter φ is searched in {0.90,
0.95, 0.99}. For RWR, the probability parameter c is searched
from 0.85 and 0.95. For MF, the number of latent factors is
searched in {5, 10, 15, 20, 50}. The best results on all data
sets are recorded. Moreover, the standard metric: the area
under the ROC curve (AUC) [Hanley and McNeil, 1982], is
used to measure the link prediction performance.

For all data sets, existing links are randomly split into: a
training set (90%) and a test set (10%). After that, all link pre-
diction approaches perform experiments on training test, and
validate its performance on test set with AUC. Table 3 sum-
marizes the link prediction performances of different algo-
rithms on ten data sets with 10% missing connections. From
Table 3, we can observe that CLMC shows its superiority over
all comparing link prediction algorithms. The potential rea-
son is that the community detection and link prediction are
mutually enhanced. The clustering constraint will make more
intra-connections to be supplemented.

3.4 Parameter Analysis
For CLMC, it involves two parameters α1 and α2. Figure
4 shows the different community detection performance by
varying the values of α1 and α2. From the figure, we can see
that CLMC can achieve a relatively stable good performance
(indicating by the yellow blocks) when α1 ranges from 0.001
to 1, and α2 ranges from 0.01 to 10 on the four data sets.

4 Conclusions
In this paper, we consider community detection and link pre-
diction simultaneously in a unified framework with cluster-
driven low-rank matrix completion. Instead of working on
the original network directly, the proposed framework learns
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Figure 4: The performance of CLMC with differernt α1 and α2 in a
wide range of grids in term of NMI.

a new ideal clustering matrix to perform graph clustering and
a supplement matrix to conduct link prediction. Experimental
results show that the proposed CLMC achieves better results
on both tasks of community detection and link prediction over
many state-of-the-art approaches.
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